2,738 research outputs found

    Electronic correlations stabilize the antiferromagnetic Mott state in Cs3_3C60_{60}

    Full text link
    Cs3_3C60_{60} in the A15 structure is an antiferromagnet at ambient pressure in contrast with other superconducting trivalent fullerides. Superconductivity is recovered under pressure and reaches the highest critical temperature of the family. Comparing density-functional calculations with generalized gradient approximation to the hybrid functional HSE, which includes a suitable component of exchange, we establish that the antiferromagnetic state of Cs3_3C60_{60} is not due to a Slater mechanism, and it is stabilized by electron correlation. HSE also reproduces the pressure-driven metalization. Our findings corroborate previous analyses suggesting that the properties of this compound can be understood as the result of the interplay between electron correlations and Jahn-Teller electron-phonon interaction.Comment: 4 pages, 3 figure

    Electronic Hong-Ou-Mandel interferometer for multi-mode entanglement detection

    Full text link
    We show that multi-mode entanglement of electrons in a mesoscopic conductor can be detected by a measurement of the zero-frequency current correlations in an electronic Hong-Ou-Mandel interferometer. By this mean, one can further establish a lower bound to the entanglement of formation of two-electron input states. Our results extend the work of Burkard and Loss [Phys. Rev. Lett. 91, 087903 (2003)] to many channels and provide a way to test the existence of entangled states involving both orbital and spin degrees of freedom.Comment: 6 pages. Revised version. Ref. adde

    Racial Capitalism in Voltaire's Enlightenment

    Get PDF

    An Analysis of Information Assurance Relating to the Department of Defense Radio Frequency Identification (RFID) Passive Network

    Get PDF
    The mandates for suppliers to commence Radio Frequency Identification tagging set by Wal-Mart and the Department of Defense is changing this long-time rumored technology into reality. Despite the many conveniences to automate and improve asset tracking this technology offers, consumer groups have obstinately opposed this adoption due to the perceived weaknesses in security and privacy of the network. While the heated debate between consumers and retailers continues, little to no research has addressed the implications of security on the Department of Defense Radio Frequency Identification network. This thesis utilized a historical analysis of Radio Frequency Identification literature to determine whether the current network design causes any serious security concerns adversaries could exploit. The research concluded that at the present level of implementation, there is little cause for concern over the security of the network, but as the network grows to its full deployment, more evaluation and monitoring of security issues will require further consideration

    Heat flux dynamics in dissipative cascaded systems

    Get PDF
    We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of SS and show that the presence of correlations at the beginning can considerably affect the heat flux rate. We carry out our study in two paradigmatic cases -- a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes -- and compare the corresponding behaviours. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.Comment: Final accepted versio

    Information transmission through lossy bosonic memory channels

    Full text link
    We study the information transmission through a quantum channel, defined over a continuous alphabet and losing its energy en route, in presence of correlated noise among different channel uses. We then show that entangled inputs improve the rate of transmission of such a channel.Comment: 6 pages revtex, 2 eps figure

    The time as an emergent property of quantum mechanics, a synthetic description of a first experimental approach

    Get PDF
    The "problem of time" in present physics substantially consists in the fact that a straightforward quantization of the general relativistic evolution equation and constraints generates for the Universe wave function the Wheeler-De Witt equation, which describes a static Universe. Page and Wootters considered the fact that there exist states of a system composed by entangled subsystems that are stationary, but one can interpret the component subsystems as evolving: this leads them to suppose that the global state of the universe can be envisaged as one of this static entangled state, whereas the state of the subsystems can evolve. Here we synthetically present an experiment, based on PDC polarization entangled photons, that allows showing with a practical example a situation where this idea works, i.e. a subsystem of an entangled state works as a "clock" of another subsystem

    First-principles study of the interaction and charge transfer between graphene and metals

    Get PDF
    Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density functional theory. The bonding of graphene to Al, Ag, Cu, Au and Pt(111) surfaces is so weak that its unique "ultrarelativistic" electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5 eV with respect to the conical points. The crossover from p-type to n-type doping occurs for a metal with a work function ~5.4 eV, a value much larger than the work function of free-standing graphene, 4.5 eV. We develop a simple analytical model that describes the Fermi level shift in graphene in terms of the metal substrate work function. Graphene interacts with and binds more strongly to Co, Ni, Pd and Ti. This chemisorption involves hybridization between graphene pzp_z-states and metal d-states that opens a band gap in graphene. The graphene work function is as a result reduced considerably. In a current-in-plane device geometry this should lead to n-type doping of graphene.Comment: 12 pages, 9 figure

    Cavity QED of Strongly Correlated Electron Systems: A No-go Theorem for Photon Condensation

    Full text link
    In spite of decades of work it has remained unclear whether or not superradiant quantum phases, referred to here as photon condensates, can occur in equilibrium. In this Letter, we first show that when a non-relativistic quantum many-body system is coupled to a cavity field, gauge invariance forbids photon condensation. We then present a microscopic theory of the cavity quantum electrodynamics of an extended Falicov-Kimball model, showing that, in agreement with the general theorem, its insulating ferroelectric and exciton condensate phases are not altered by the cavity and do not support photon condensation.Comment: Reference list updated and minor typos correcte

    Non-Linear Beam Splitter in Bose-Einstein Condensate Interferometers

    Full text link
    A beam splitter is an important component of an atomic/optical Mach-Zehnder interferometer. Here we study a Bose Einstein Condensate beam splitter, realized with a double well potential of tunable height. We analyze how the sensitivity of a Mach Zehnder interferometer is degraded by the non-linear particle-particle interaction during the splitting dynamics. We distinguish three regimes, Rabi, Josephson and Fock, and associate to them a different scaling of the phase sensitivity with the total number of particles.Comment: draft, 19 pages, 10 figure
    • …
    corecore